欢迎访问肥猫财经
收藏本站
肥猫财经首页 / 股市 / 炒股技巧 / 美股知识:如何在基本分析中了解PEG比率

美股知识:如何在基本分析中了解PEG比率

发布时间:2020-12-24 16:09
31
评论
(0)
文章摘要:
基础分析是一种基于内部和外部影响收集对股票真正价值的理解的方法。虽然这听起来相当复杂,但如果你知道要找什么,其实也不是很复杂。
基础分析是一种基于内部和外部影响收集对股票真正价值的理解的方法。虽然这听起来相当复杂,但如果你知道要找什么,其实也不是很复杂。许多用于基本分析的比率工具都可以在三个会计报表——资产负债表、损益表和现金流量表上找到或计算出来。
其中一种工具是每股收益比(P/E)与增长比(PEG)。这个比率不如它的基本值那么广为人知,它可以让你对股票的实际价值有一个更全面的了解,一旦你知道如何正确的使用和解释结果,你就可以更加了解股票的实际价值,从而获得收益的潜力。
美股知识:如何在基本分析中了解PEG比率
公式的组成
市盈率是PEG的一个关键组成部分。你可以用股票的当前股价除以每股收益(EPS)来计算市盈率。这个数字可以让你比较一只股票与其他股票的相对价值,以及确定市场对一只股票的定价是否高于或低于它的收益。
另一个组成部分,收益增长,是指从一个时期到下一个时期公司预期收益结果的百分比变化。
市盈率与增长率
市盈率可以让你确定股票的价值,比如市盈率,同时也要考虑公司的盈利增长。这一前瞻性的组成部分使挂钩比率比单独使用市盈率能更全面地了解一只股票的基本面。
你可以用市盈率除以预期或实际盈利增长率来计算挂钩比率:
挂钩=市盈率/(预期或实际)盈利增长
例如,一只股票的市盈率为2,而明年的预期收益增长率为10%,那么它的PEG比率为20(2的市盈率除以10的预期收益增长率= 20)。这是一个非常高的挂钩,表明该股票被高估了。
联系汇率的比率越低,股票相对于其盈利预期可能越被低估。相反,该数字越高,市场越有可能高估该股票。
解释结果
与单独使用市盈率相比,将挂钩比率与股票的市盈率结合使用会得出截然不同的结果。
市盈率非常高的股票可能会被视为估值过高,不是一个好的选择。计算同一只股票的挂钩比率,假设它有良好的增长预期,实际上可以得出一个较低的数字,表明这只股票可能仍然是值得买进的。
反之亦然。如果你有一只市盈率很低的股票,你可能会从逻辑上认为它被低估了。然而,如果该公司的盈利增长预期没有大幅增长,你可能会得到一个实际偏高的挂钩比率,这表明你应该放弃购买该股票。
在基础分析中应用PFG
高估或低估挂钩比率的基准数字因行业而异,但投资理论认为,根据经验,低于1的挂钩比率是最理想的。当挂钩比率等于1时,这意味着市场对股票的感知价值与其预期的未来盈利增长是平衡的。
例如,如果一只股票的市盈率为15,而该公司预计其收益增长15%,那么它的市盈率就会接近1%。 
当联系汇率超过1时,这意味着市场增长超过预期,或者对某只股票的需求增加导致该股票估值过高。
低于1的比率表明,分析师要么将他们的普遍预期设定得太低,要么认为市场低估了该股的增长前景和价值。
当您使用其他工具进行基本面分析时,您是在将PEG比率与您所选择的其他比率进行比较。如果你选择的工具都显示出被低估的比率,那么你可能已经找到了一只值得投资的股票。
与任何分析一样,结果的质量随输入数据的不同而变化。例如,与公司预计未来增长率更高或向上趋势的比率相比,以历史增长率计算的挂钩比率可能不那么准确。

免责声明:本网站对所有文章陈述保持中立,本网站所刊载的所有信息仅供参考,不用做交易和服务的根据,且不构成任何投资建议。本网站致力于提供合理、准确、完整的资讯信息,但不保证数据绝对正确,且不对因信息的不合理、不准确或遗漏导致的任何损失或损害承担责任。如自行使用本网资料发生偏差,本站概不负责,亦不负任何法律责任。凡以任何方式登陆本网站或直接、间接使用本网站资料者,视为自愿接受本网站声明与约束。

喜欢本文 马上分享
发布评论
还能输入:144字
发布评论
最新评论
暂无评论
交易欧元美元
<广告>

财经日历

06月16日 星期三
全部日历
19:00
美国至6月11日当周MBA抵押贷款再融资活动指数
美国至6月11日当周MBA抵押贷款再融资活动指数
前值:
2869.2
预期:
---
今值:
---
19:00
美国至6月11日当周MBA抵押贷款申请活动指数
美国至6月11日当周MBA抵押贷款申请活动指数
前值:
645.4
预期:
---
今值:
---
19:00
美国至6月11日当周MBA30年期固定抵押贷款利率
美国至6月11日当周MBA30年期固定抵押贷款利率
前值:
3.15%
预期:
---
今值:
---
货币
汇买价
汇卖价
折算价
638.4
641.1
640.78
772.78
778.48
776.85
900.03
906.66
902.17
82.24
82.57
82.54
5.7981
5.8408
5.8212
0.5697
0.5743
0.5735
480.66
484.04
482.66
79.94
80.25
80.13
523.32
527.18
525.86
20.44
20.6
20.56